If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+150t+714
We move all terms to the left:
0-(-16t^2+150t+714)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+714)=0
We get rid of parentheses
16t^2-150t-714=0
a = 16; b = -150; c = -714;
Δ = b2-4ac
Δ = -1502-4·16·(-714)
Δ = 68196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68196}=\sqrt{4*17049}=\sqrt{4}*\sqrt{17049}=2\sqrt{17049}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{17049}}{2*16}=\frac{150-2\sqrt{17049}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{17049}}{2*16}=\frac{150+2\sqrt{17049}}{32} $
| X+35=8x+17 | | r/2+18=17 | | r2+18=17 | | 3f(2)=-2 | | 6/x=2+2x | | -6/x=2 | | v/5–1=1 | | s/2+1=10 | | X-2(-3x+1)=2 | | 8u+3=-5 | | x(x−5)=150 | | k2–1=1 | | -12+4x=5(x-3) | | 2x+2x+3=3 | | c8–1=1 | | 70+4x=180 | | m2+5=-2 | | 376.38=7y+5y | | X^2+81=4x | | u*7=14 | | 7*r=7 | | m*5=25 | | 3*y=3 | | 9r–14=4 | | 10u+16=6 | | 3(x+5)=x+2(3+x) | | -4+2k=-6 | | -5+5s=15 | | 2(1y+-6)=-16 | | 3g+2/5=-1/5 | | 4x-5=9x+16 | | v/2+12=13 |